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2. STATEMENT OF THE PROBLEMS STUDIED:
The various goals of the project were clearly stated in the main proposal. Seven of them, widely different
in length and difficulties were explicitly listed; they were
(1) derivation of optimal error estimates for multidimensional monotone schemes for conservation laws,
(2) generalization to schemes that do not possess splitting fluxes,
(3) generalization to higher order methods,
(4) study of the possibility, or lack thereof, of generalization to systems of conservation laws,
(5) derivation of general a posteriori estimates,
(6) design and implementation of mathematically sound adaptive strategies for hyperbolic problems,
(7) applications to granular flows and other problems (in particular Hamilton-Jacobi equations, even
though those were not explicitly mentioned in the proposal).

3. SUMMARY OF THE MOST IMPORTANT RESULTS:

Significant advances were obtained for most, but not all of the above problems. People who collaborated
with the PI on questions covered by the project at one point or another, but were not directly supported by
it, include Profs. G. Amiez, (U. of Franche-Comté, France), V. Alexiades (U. of Tennessee), B. Cockburn (U.
of Minnesota), D. Schaeffer (Duke University) and M. Shearer (North Carolina State University), as well as
K.S. Lowder (former graduate student, Gremaud adviser, U.S. Airforce Academy), N.R. Ide (former graduate
student, Gremaud adviser, Lincoln Lab, MIT), J.V. Matthews (current Ph.D. student, Gremaud adviser),
and W. Turner (former graduate student, Gremaud adviser, NCSU). We have also worked in consultation
with Engineers at Jenike & Johanson, Inc., Westford, MA., and in particular T.A. Royal, Vice President, to
develop efficient and robust solvers for various types of problems related to granular flows.

The accomplishments corresponding to the above categories are now reviewed. In a first part, the work
pertaining to error estimates for conservation laws is discussed (parts (1) through (6)). A second part deals
with the advances related to both Hamilton-Jacobi equations and granular materials. Finally, some remarks
on ongoing and future work are offered.

Error estimates for numerical conservation laws (parts (1)-(6)). )
The goal was here to estimate the error between the weak entropy solution v to a generic scalar conser-

vation law
Sv+V- f(‘l)) =0,

v(+,0) = vo.

and a numerical solution u constructed from as general a method as possible. Several aspects of those types
of hyperbolic problems makes this a challenging task, namely the presence of shocks and the existence of
many weak solutions, among which only the entropy solution is believed to have a physical meaning,.

Our main contribution is the derivation of a priori estimates, i.e., estimates written only in terms of the
exact solution. Those estimates are of the form

e(T) < ®(v,T),

where e(t) denotes the L!-error at time ¢. Our results are the first and only rigorous error estimates of this
type for nonlinear conservation laws. All the other results we are aware of are of the form

e(T) < ¥(v,u,T),
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i.e., they also involve the approximate solution u. If ¥ does not involve v but only u, the latter estimate is
referred to as an a posteriori error estimate.

At the beginning of this proposal, virtually every error estimate was based on an original approach by
Kuznetsov (1976). In a joint work with B. Cockburn (1996) that took place slightly before the start of
the present project, we identified Kuztnetsov’s point of view as an a posteriori approach. This was then
applied to the derivation of a posteriori error estimates for both shock capturing streamline diffusion methods
and shock capturing discontinuous Galerkin methods. A posteriori estimates are very useful for practical
computations if they are properly used as part of an adaptive strategy. Part of the present project, see part
(6) above, dealt with those very issues. Essentially, our a posteriori estimates are as follows

e(T) < e(0) + C|| &Il (u) + V - f(¢, 2, () [lL21(0,7,L7)

where C is a numerical constant, I, an interpolation operator into a finite dimensional space of continuous,
and thus 81T (u) + V - f(t,z, M (w)) is the residual. The feasibility of using such a result as the basis for
an adaptive strategy was studied for instance in K. Lowder, Mesh Optimization for Conservation Laws,
Master’s Project, Dept. of Mathematics, NCSU, Gremaud Adviser (1996). The point of view taken there
was to obtain a “close to optimal” mesh at each time, based on the error estimate. The results were mixed.
In the simplest cases tried, the grids were successfully adapted to the features of the solution. However,
first, it came at considerable computational cost. Second, for more involved cases, the construction of the
residual, for instance the choice of a proper interpolation operator Il in the above expression, played a
crucial role. We were not able to find a general way of constructing such a operator that would work for
“a11” cases. Here again, having to deal with possibly discontinuous solutions is a significant complicating
factor. The algorithms obtained were not competitive with most of the common heuristic methods in this
field, as far as adaptivity is concerned.

A natural next step consisted then in improving our understanding of the influence of the grid on the
accuracy of the numerical solution. Indeed, an adaptive strategy is likely to change the size, the uniformity
and the topology of the grid. The best way of studying those effects is through a priori error estimates. This
project has led to very significant improvements in that respect.

It has been known from quite some time that if the numerical fluxes do not properly take into account the
irregularities of the grid, a loss of consistency occurs. This can be shown on very simple examples, for which
the truncation error does not go to zero, see e.g. [8] below. The fact is, that in most practical codes, numerical
fluxes are not modified to take into account local mesh variations. Yet, those codes perform quite well, and
not only converge to the correct solution, but may in fact do so without loss in the order of convergence, this,
in spite of the loss of consistency. This supraconvergence phenomenon remained unexplained for nonlinear
conservation laws until the publication of [8], and [7] after that. The approach is based on a modification of
Kuznetsov’s original approximation theory. The point of view taken is essentially the dual of Kuznetsov’s,
and does lead to a sound a priori theory. This was applied in [8] to monotone schemes on nonuniform
Cartesian grids, and in [8], to monotone on general multidimensional grids. An interesting point is related
to the importance of the topology of the grid. It is known (Sanders, 1983) that for monotone schemes on
Cartesian grids, uniform or not, the total variation of the numerical solution does not increase in time.
This is not true for non-Cartesian grids, even uniform ones. Indeed, in [7], a simple example is presented
on a uniform grid consisting of equilateral triangles, and hence non-Cartesian, for which even the Lax-
Friedrichs scheme presents an increase in total variation. This shows that the case of non-Cartesian grids
is intrinsically, not just technically, more complex. The estimates in [7] are given in terms of quantities
measuring, for general multidimensional grids, the departure from Cartesianity and uniformity. This work
is the first rigorous explanation of the abovementioned supraconvergence phenomenon. In essence, what
happens is that the possible lack of consistency of the numerical methods is in fact compensated providing
two fundamental properties are satisfied: first, the methods are conservative, second, the numerical fluxes
are consistent (not to be confused with the consistency of the entire method).
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The above approach can in principle be applied to higher order methods. It is in fact the only theoretical
approach we know for which this statement can be made in a reasonably general sense. However, the shear
technical complexity is enormous. This point remains under study. Another aspect was the possibility, or
lack thereof, of a generalization of the above results to systems of hyperbolic conservation laws. Here, the
difficulties are not technical, but conceptual, since in fact the whole notion of entropy solution becomes
problematic for systems. The Numerical Analysis of such problems remains essentially an open problem.
It would appear that what is needed is not some kind of incremental improvement, built on the available
theory, but a complete breakthrough. There have been, however, progresses made during the period of this
project related to the understanding of systems of first order nonlinear Partial Differential Equations, see in
particular the work below in systems of Hamilton-Jacobi equations.

Applications: Hamilton-Jacobi equations and granular materials.

As mentioned above, the case of systems of conservation laws is still largely an open problem. Recent
results have however been obtained for Hamilton-Jacobi equations, both in the scalar and vectorial cases
(Dacorogna-Marcellini, 1996). Essentially, those results apply to cases for which the usual viscosity approach
is either ill-suited or not applicable. An important application is solid-solid phase transition problems, which
are usually expressed as multi-well potential problems. Those can be recast as systems of Hamilton-Jacobi
equations, an entirely new approach.

We have proposed and tested a numerical approach for the calculation of solutions to Hamilton-Jacobi
equations under a viscoelasticity/capillarity criterion. The (very weak) notion of “satisfying the boundary
conditions in the viscous sense” as well as the nonexistence of the very notion of viscosity solution in the
vectorial case prevented us from using the classical viscosity criterion. The challenge was to construct
methods that would convergence to a properly selected solution in the scalar and in the vectorial case. The
idea of the methods consists in discretizing the original PDEs by finite difference formulas of sufficiently
high order as to guarantee the model equations to be identical to the PDEs. Anything short of that would
lead, and indeed did lead, to an effective modification of the selection criterion. The approach is used in
conjunction with a pseudotime integrator of the BDF type. Before this work, almost all the results dealing
with the use of the above selection criterion were for scalar equations in the 1d case. We have not only
treated multidimensional scalar problems, but also multidimensional vectorial ones. We are not aware of
other numerical results about vectorial Hamilton-Jacobi equations. Practically speaking, the advantage
of the method is as follows. For typical solid-solid phase change problems, the traditional approach is to
construct an energy functional (always nonconvex, unless the problem is trivial), discretize the corresponding
variational problem, and then solve somehow the corresponding discrete strongly nonconvex minimization
problem. As is well known, nonconvex minimization is hard, and the methods likely to be used, at least in
the case of solid-solid phase change problems, are likely to be ad hoc, and void of any physical justification.
The aim here was to bypass the minimization problem by solving to steady state a physically meaningful
problem (time dependent Hamilton-Jacobi system). The feasibility of the approach was illustrated in [3].

The last part of the project involves the study of an important type of application: the study of the flow
of granular materials. In the general subject of industrial flows, it can be argued that granular flows are as
important as fluid/gas flows (see agriculture, chemical, construction and pharmaceutical industries to name
but a few). In spite of this, those problems have received very little attention. Part of this project deals
with those problems (see part 4, project abstract, p. C-1.).

One of the first and main problems one encounters when dealing with granular materials is to obtain a
proper mathematical model. Several models exist, that appear to capture well some, but in general not all,
aspects of the phenomena under consideration. Our approach is twofold. First, we aim at obtaining, through
careful Analysis and Numerical Analysis of existing models, efficient and reliable computational tools that
will allow for meaningful investigations the models themselves, through comparisons with experiments for
instance. Second, and at a less fundamental level, having such computational tools represents a breakthrough
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in this field, and open new opportunities in terms of numerical simulations in industrial settings.

So far, our study has been restricted to established hopper flows. This constitutes in our view a first,
meaningful, step toward the study of more general problems, as discussed below. Equations governing the
time dependent flow of granular material under gravity can be derived and analyzed. However, those are
found to be linearly illposed in most cases of practical interest. To our knowledge, the situation is not
fully understood, mathematically or otherwise. In practice, strongly time-dependent problems are usually
observed in conjunction with funnel flows, i.e., flows for which the motion is essentially restricted to the
central part of the silo. Our study has dealt, so far, exclusively with mass flows, i.e., flows for which all the
material is mobilized. In this context, established, steady state flows can be observed.

In a nutshell, our contributions have been

(1) construction and implementation of cellular automaton model for hopper flows,

(2) investigation of the properties and stability of radial stress fields for various plasticity models,

(3) investigation of extensions of the notion of radial solutions, and their possible use as design tools for
flow corrective inserts,

(4) first implementation of a highly accurate method (Discontinuous Galerkin method) for the compu-
tation of hopper flows,

(5) computation of “switch stresses” due to changes of the hopper’s wall angle.

We now proceed to describe in more details the above points.

Cellular automaton. A simple cellular automaton model was designed. The idea is essentially to work
with discrete particles, that can only be in “states” taking values in some discrete spaces. In spite of its
simplicity, this type of models allowed us to predict structure formations reminiscent of the density waves
observed experimentally with some hopper flows, see [9] for details. However, the approach also suffers from
serious drawbacks. In particular, by its very nature, all the information available from such simulations is
at the particle level. It is not always obvious and/or convenient to translate this into quantities that can
be experimentally measured. Further, an obvious bottleneck is the number of particles that can be treated.
The continuum approach, that we have adopted since then, has none of those disadvantages.

Radial solutions. In some cases of industrial importance, such as axisymmetric containers (silos),
similarity solutions (radial solutions) can be constructed. Most of the existing work in this field is in fact
based the use of those solutions. This is especially true of the Engineering literature. In [6], those solutions
were constructed for two plasticity models, namely for Mohr-Coulomb and von Mises yield conditions.
Comparisons of the stress and velocity fields for the two models gave a better picture of their respective
properties. Further, in the simplest of the two cases (Mohr-Coulomb), a numerical stability study was
performed. Thanks to the use of a highly accurate method (pseudospectral Chebyshev collocation method),
a fairly complete picture of the influence of the material parameters, such as internal friction and wall friction,

on the stability was uncovered.

Extension of the notion of radial solutions. The notion of radial solution has several obvious
shortcomings. Prime among those is the fact that it only exists in radially symmetric domains. As an
attempt to alleviate this limitation, we have studied the possibility of considering the radial solution as the
first term in an expansion of the following type

T(r,0) = rT°(0) + r*T(8) + ...
v(r,0) = -11:110(0) +0' @) +....
where T and v stand for generic stress and velocity components respectively. The zero-th order terms

correspond to the radial solution. This approach was explored in [6] were it was applied to non radially
symmetric domains, and specifically to the determination of flow corrective inserts. Although the approach
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was successful, it also brought to light several limitations of even this type of extensions of the radial field.
More precisely, it turns out that in many cases of practical interest, the above expansion converges too slowly
to be competitive with the resolution of the full system of equations, which we discuss now.

Numerical resolution of the full system of equations. The full system of equations correspond
to the laws of conservation of mass and momentum. In the simplest case, i.e., Mohr-Coulomb materials,
the stress equations decouple from the velocity equations (the later still depend on the stresses). The stress
equations correspond then to a pair of hyperbolic conservation laws with source terms and nonlinear boundary
conditions. To date, most attempts toward the numerical simulation of the corresponding solutions have been
based on a judicious change of variables. Indeed, the yield condition corresponds to an algebraic constraint
which can be “solved”. In othér words, when using the so-called Sokolowskii variables the constraint is
automatically satisfied. Numerical methods can be then used to solve the reformulated system, for instance
in terms in the Riemann invariants, which was our first approach.

However, and in spite of its popularity, the use of those Sokolowskii comes at a heavy price: the con-
servative form of the equations is lost, and thus, so is the ability to analyze and/or compute shocks. One
has to conclude that the equations should in fact preferably be solved in the original variables, even at the
price of having to deal with a corresponding complicated hyperbolic flux term (no a priori bounds on the
wave speeds). Further, the discretization of the equations in conservation form has several advantages from
a purely numerical point of view. We have implemented an algorithm corresponding to a formally globally
third order Discontinuous Galerkin method for the resolution of three dimensional axisymmetric hopper
flows involving Coulomb materials. The approach has been extremely successful.

Computation of switch stresses. As a way of illustration, we include hereafter calculations corre-
sponding to the influence on the stress field of abrupt changes in the wall angle. The geometrical situation

is as follows

FIGURE 1. Geometrical situation; left: transition to a flatter wall angle, right:
transition to a steeper wall angle. The radial stress is used to generate an initial
condition on the curve I'y. The domains of calculation are shaded.

In the case of a transition from a steeper to a flatter hopper, the following type of structure is observed
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FIGURE 2. Structure of the stress field induced by a transition from an opening

angle of 10° to one of 15°. The actual geometry of the hopper is represented.
If instead, the wall goes from flatter to steeper, the stress field takes the following form
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FIGURE 3. Structure of the stress field induced by a transition from an opening
angle of 10° to one of 12°. The actual geometry of the hopper is represented.

We are not aware of other successful calculations of this type of effects. The corresponding equations
are quite delicate to handle numerically because of the interplay between the source terms and the nonlinear
boundary conditions. Further, some assumptions related to the structure of the above waves can be found in
the literature. It has for instance been conjectured that a transition to a flatter hopper, see Figure 2, would
induce shocks, while a transition to a steeper one, see Figure 3, would corresponding to rarefaction types
of waves. Those claims are typically based on unsubstantiated arguments, for instance on a radial solution
analysis. This cannot make sense here because of the lack of symmetry of the full domain, see Figure 1.
Figures 2 and 3 suggest that the situation is in fact more complicated. A full analysis of those results is
under way. Experimental comparisons can be done for instance based on the values of the normal stress on
the wall predicted by the numerics. This type of comparison is also under way, specifically for cereal types
of grains in steal hoppers for instance.




Ongoing and future work about granular materials. We list hereafter ongoing and future work,
starting from tasks that are well under way or expected to present no major difficulties, to more involved
problems.

(1) Resolution of the velocity equations. Within our current model, the velocity equations consist
in an additional pair of hyperbolic conservation laws coupled to the stresses, to which the same
numerical approach (essentially the same Discontinuous Galerkin code) can be applied. One of the
challenges lies here in determining how the velocity “information travels”. We expect a careful
numerical study to bring an answer to this type of questions, that are for now open.-

(2) Computation of flows around obstacles. Assuming the flow is still consistent with the assump-
tions of the models, this computation can be done without further difficulties.

(3) Inclusion in the models of interstitial fluids. When dealing for instance with fine powders or
soils (clay, etc...), the presence of interstitial fluid cannot be neglected. The models have then to be
revised to include the corresponding effects. So far, our work in this direction has been limited to the
study of the consolidation of fine powders. Further, many problems of prime interest to the Army
such as mine detection or soil vehicle interactions are by nature quite close to both the computation
of flows around obstacles and the present question of interstitial flows. Plowing is another example.
Preliminary contacts have been taken with Drs. J.F. Peters and D.A. Horner at the U.S. Army
Engineer Waterways Experiment Station in Vicksburg, MS (visit to WES in Oct. 98), to explore
this further.

(4) Determination of more general switch stresses. We cannot treat, in the present context, the
case of the transition from a vertical pipe to a conical hopper. The reason is that in the vertical
pipe, the granular material is thought to be in an active state, as opposed to a passive state as in any
conical hopper. This change corresponds mathematically, in our current setting, to a discontinuity
in the hyperbolic flux function itself. The model as it stands does not allow for the prediction of
where the transition between active and passive kind of flows takes place.

(5) Long term objectives. Among the long term objectives, we include the possibility of solving
the above problems for a wider range of constitutive laws, such as for instance critical state soil
mechanics, the possibility of computing and analyzing rigid-plastic free boundaries, as well as the
treatment of fully time dependent problems.




4. TECHNOLOGY TRANSFER:

We will pursue our collaboration with Jenike & Johanson, Inc. After our recent visit there, the focus will
be on the efficient resolution of the full problem for granular flows (as described above). One of the common
goals is the construction of numerical solvers that work in nontrivial geometries (hopper with insert, for
instance), and for a wide variety of materials. Additional contacts have already been scheduled. Further,
our numerical code for the resolution of powder consolidation problems in currently (Summer 99) being tested
by the engineers at Jenike & Johanson. This code, which uses a Differential Algebraic Equation approach
to the problem of determining stresses, air pressure and height of a column of powder in an axisymmetric
geometry is of immediate practical use.

FIGURE 4. Graphic user interface, GUI, for the powder consolidation problem,
being tested at Jenike and Johanson, Inc.
We also intent to explore further the possibility of collaborating with the researchers at the U.S. Army
Engineer Waterways Experiment Station in Vicksburg, MS, especially in terms of the possible use the present
continuum approach to “plowing type problems”.
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